Statistical Analyses of Stormwater
Characterization and Control Data

Mostly excerpted from:
Burton, G.A. Jr., and R. Pitt. Stormwater
Effects Handbook: A Tool Box for Watershed Managers,
Scientists, and Engineers. CRC Press, Inc., Boca Raton, FL .
2002. 911 pages.

Bob Pitt
University of Alabama

Recommended Experimental Design Books (with
some basic statistical methods)

Statistics for Experimenters. George E. P. Box, William
G. Hunter and J. Stuart Hunter. John Wiley and
Sons, 1978. This book contains detailed descriptions
of basic statistical methods for comparing
experimental conditions and model building.

Statistical Methods for Environmental Pollution
Monitoring. Richard O. Gilbert. Van Nostrand
Company, 1987. This book contains a good summary

of sampling designs and methods to identify trends,
unusual conditions, etc.

Recommended Exploratory Data Analysis
Reference Books

Exploratory Data Analysis. John W. Tukey. Addison-Wesley
Publishing Co. 1977. This is a basic book with many simple ways
to examine data to find patterns and relationships.

The Visual Display of Quantitative Information. Edward R. Tufte.
Graphics Press, Box 430, Cheshire, Connecticut 06410. 1983.
This is a beautiful book with many examples of how to and how
not to present graphical information. He has two other books that
are sequels: Envisioning Information 1990, and Visual

Explanations: Images and Quantities, Evidence and Narrative,
1997.

Visualizing Data. William S. Cleveland. Hobart Press, P.O. Box
1473, Summitt, NJ 07902, 1993 and The Elements of Graphing
Data, 1994 are both continuations of the concept of beautiful and
information books on elements of style for elegant graphical
presentations of data.

Recommended General Statistics Books

Statistics for Environmental Engineers. Paul Mac Berthouex and
Linfield C. Brown. Lewis, 2" ed. 2001. This excellent book
reviews short-comings and benefits of many common statistical
procedures, enabling much more thoughtful evaluations of
environmental data.

Biostatistical Analysis. Jerrold H. Zar. Prentice Hall. 1996. A
highly recommended basic statistics text book for the
environmental sciences, especially with its many biological
science examples.

Primer on Biostatistics. Stanton A. Glantz. McGraw-Hill. 1992.
This is one of the easiest to read and understand introductory
texts on basic statistics available.




Recommended Books for Specialized

Statistical Methods

Nonparametrics: Statistical Methods Based on
Ranks. E.L. Lehman and H.J.M. D’ Abrera.
Holden-Day and McGraw-Hill. 1975. This is a
good discussion with many examples of
nonparametric methods for the analysis and

planning of comparative studies.

Applied Regression Analysis. Norman Draper and
Harry Smith. John Wiley and Sons. 1981.
Thorough treatment of one the most commonly

used (and misused) statistical tools.

Accuracy
Definitions:

(a) low precision,
large bias,

(b) low precision,
small bias,

(c) high
precision, large
bias, and

(d) high
precision, small
bias (the only
“accurate” case)

(b)

(c)

(d)
Gilbert 1987

Experimental Design

» Numbers of samples to satisfy data quality
objectives

» Arrangement of experiments to maximize
sensitivity and to identify major factors and
interactions

n=[COV(Z,, + Z, p)l(erron)]?

n = number of samples needed

o= false positive rate (1-a is the degree of confidence. A value of o
of 0.05 is usually considered statistically significant, corresponding
to a 1-a degree of confidence of 0.95, or 95%.)

= false negative rate (1- is the power. If used, a value of § of 0.2
Is common, but it is frequently ignored, corresponding to a § of 0.5.)
Z1.o = Z score (associated with area under normal curve)
corresponding to 1-o. If o is 0.05 (95% degree of confidence), then
thglco)rresponding Z1.4 Score is 1.645 (from standard statistical
tables).

Zy.5= Z score corresponding to 1-B value. If B is 0.2 (power of
80%), then the corresponding Z1-p score is 0.85 (from standard
statistical tables). However, if power is ignored and B is 0.5, then the
corresponding Z1.g score is 0.

error = allowable error, as a fraction of the true value of the mean

COV = coefficient of variation (sometimes notes as CV), the
standard deviation divided by the mean (Data set assumed to be
normally distributed.)




Error Types

« (alpha) (type 1 error) - a false positive, or assuming something
is true when it is actually false. An example would be
concluding that a tested water was adversely contaminated,
when it actually was clean. The most common value of is 0.05
(accepting a 5% risk of having a type 1 error). Confidence is 1-
o, or the confidence of not having a false positive.

(beta) (type 2 error) - a false negative, or assuming something
is false when it is actually true. An example would be
concluding that a tested water was clean when it actually was
contaminated. If this was an effluent, it would therefore be an
illegal discharge with the possible imposition of severe
penalties from the regulatory agency. In most statistical tests, is
usually ignored (if ignored, is 0.5). If it is considered, a typical
value is 0.2, implying accepting a 20% risk of having a type 2
error. Power is 1-, or the certainty of not having a false
negative.

Mumber of Sample Pairs Needed
(Power=80% Confidence=95%)

Daference In Sample Set Means (%)
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Experimental Design - Number
of Samples Needed

Number of Samples Required
The number of samples (alpha = 0.05, beta = 0.20)

needed to characterize

stormwater conditions for / 2
a specific site is 7 =
dependent on the COV %/ .

and allowable error. For %’
j!
)ﬂ

most constituents and e
conditions, about 20 to 30

samples may be sufficient P _
for most objectives. Most

Coefficient of Variation

Phase 1 sites only have
about 10 events, but each

o1

stratification category o a2 o3 o4 05 05 0708001

Allowable Error (Fraction of Mean)

usually has much more.

Burton and Pitt 2002

Experimental Design Example using
Preliminary Data

preliminary preliminary
data set #1 data set #2

60 26

55 22
65 26
84 22
75 45
38 58
98 25
39 58
55 59
48 45




mean:
standard deviation:
CoOVv:

False
False neg.
pos. rate: rate:

(Confid.) V4 (Power)

1-a

97.50% 1.96 95%
95% 1.645 90%
95% 1.645 80%
90% E 1.28 80%
80% 0.847 50%

ul =

u2=

ul-u2=

avg st dev =

avg COV =

% difference of means

Factorial Analysis

A basic and powerful tool to identify significant
factors and significant interacting factors.

Use as the first step in sensitivity analysis and model
building.

Far superior to “holding all variables constant except ©
for changing one variable at a time” classical
approach (which doesn’t consider interactions).

Should be used in almost all experimental
evaluations, especially valuable in controlled
laboratory tests, and very useful to organize
“environmental” test results.
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(¢) Three-factor interaction Box, Hunter and Hunter 1987

bt
Moisture ‘exture Compacted  Factorial  \orooe Siandard Eror  Number

(Wet=+/Dry=) ~ (Clay=+/Sand=") (Yes=+No=)  Group
+ + + T 023 013 18
+ + 2 043 0.50 27
+ - + 3 131 113 18
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Pitt, et al., 1999
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Effect Residual

Particle Size Distribution of Street Dirt

PERCENTAGE EQUAL OR SMALLER THAN SIZE INDICATED

Tropicana - Good Asphalt
——— Keves - Good Asphait

=——= Keyes - Off and Screens
——— Downtown - Good Asphalt
— —— Downtwown - Poor Asphalt

PARTICLE SIZE kst

Measured Particle Sizes, Including Bed Load Component,
at Monroe St. Detention Pond, Madison, WI
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Exploratory Data Analyses

Basic QA/QC data plots
Probability plots and histograms

Scatterplots
Grouped box and whisker plots
Simple line plots

Ratio of Available SS to Total SS
Street Dirt Loadings

I=0.082+0.04
T = -0.08+ 0.05

¥ = 0.097 + 0.04¢I) - 0.04(T)

I+T+ (high and rough) :
I+T- (high and smooth):
I-T+ (low and rough)

I-T- (low and smooth) :
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These log-
normal
probability
plots indicate
much better
straight-line
fits, indicating
likely log-
normal
probability
distributions
of the data.
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Probability Plots for First-Flush Analyses

Normal Probability Plot for TSS_CO_CM...TSS_CO_FF
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Comparison of Sewage with Dry

Library samples v/s sewage-E. coli
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Plots of concentrations vs. rain depth typically show random patterns.
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Plots of expected relationships are being used to identify data
redundancies that can reduce future analytical costs.
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3-D plot showing lack of obvious relationship
between rain depth, geographical area, and
drainage area for residential suspended solids
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Paired observations of data

Parametric tests (data require normality and equal variance)
- Paired Student’s t-test (more power than non-parametric

tests)

Non-parametric tests

- Sign test (no data distribution requirements, some missing
data accommodated)
- Fiedman’s test (can accommodate a moderate number of
“non-
detectable” values, but no missing values are allowed
- Wilcoxon signed rank test (more power than sign test, but
requires symmetrical data distributions)




E. coli AND Enterococci REMOVAL

Enterococci

Influent

PEAT-SAND FILTER: Pilot-Scale Testing, Fall 1999

Box Plots - Filter Fabric Unit

Influent
COD (mg/L)
Influent

Suspended Solids (mg/L)

Suspended Solids (mgiL)

Suspended Solids (mg/L)
o8 888 88388 iE 8

Influent

Influent

Box Plots - Coarse Screen Unit

CcOD (mglL)

Influent

Box Plots - Catchbasin with Sump

COD (mg/L)

Influent
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Solids Removal in Swales: Flow Length

Normal Probability Plot for Location
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Box Plot for Flow depth
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160 -

o 250
mg/L (Total Solid)

Many groups (use multiple comparison tests, such as
the Bonferroni t-test, to identify which groups are
different from the others if the group test results are
significant).

Parametric tests (data require normality and equal variance)
- One-way ANOVA for single factor, but for >2 “locations”
(if 2 “locations, use Student’s t-test)
- Two-way ANOVA for two factors simultaneously at
multiple “locations”
- Three-way ANOVA for three factors simultaneously at
multiple “locations”

- One factor repeated measures ANOVA (same as paired t
test, except that there can be multiple treatments on the
same group)

- Two factor repeated measures ANOVA (can be multiple
treatments on two groups)

Two independent groups of data

Parametric tests (data require normality and equal variance)
- Independent Student’s t-test (more power than non-
parametric tests)

Non-parametric tests
- Mann-Whitney rank sum test (probability distributions of
the two data sets must be the same and have the same
variances, but do not have to be symmetrical; a moderate
number of “non-detectable” values can be accommodated)

Many Groups (cont.)

Non-parametric tests:

- Kurskal-Wallis ANOVA on ranks (use when samples
are from non-normal populations or the samples do not
have equal variances).

- Friedman repeated measures ANOVA on ranks (use
when paired observations are available in many groups).

11



These grouped box-whisker
Manv Groups (cont. plots sort all of the data by land ~__, .. .
y p ( ) use. Kruskal-Wallis analyses 2 « v i
. . . indicate that all constituents I | i | . 3 l
Noml_nal obs_ervatlons of frequencies (used when counts are have at least one significantly § L = [ — =
recorded in contingency tables) different category from the 3, O r o T
others. Heavy metal differences I ! . l
- Chi-square (X2) test (use if more than two groups or are most obvious. . * . .
categories, or if the number of observations per cell in a @ & ﬁy“ & i
2X2 table are > 5). :
pry H . M . s .
- Fisher Exact test (use when the expected number of g I : l I I " ' .
observations is <5 in any cell of a 2X2 table). 2 _ l I 1 ; i i | . I
- McNamar’s test (use for a “paired” contingency table, such : }7 ' ! ] == E = = — . =
as when the same individual or site is examined both before g” l ' ' - | ' ; | I =T
and after treatment) . L . : _ . !
;,o«““ s e“'f.l @‘ﬁo} \r"f‘& 0\5_:"'6 -ee‘"‘\ﬁs -vc”fé ‘«“*‘us‘ @fa\ wf\é fe‘lﬁg <-s3‘;

Fluorescence
3.5 Example 2-way ANOVA

3.0 —
2.5 — Want to investigate the differences between

2.0 - $ i different strata.
15 1 % Egj I Are the variations between groups more important

—

E than the variations within the groups?

% 9] What about interactions between different

S 05— variables?
0.0 — ANOVA requires normally distributed data. In
-0.5 — most stormwater cases, log-transformed values
1.0 need to be used.

1 I | | I | 1
Tap Spring Imigation Laundry Carwash Industial Sewage
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Precipitation Group

Group 1: <0.1 inch of rain

Group 2: between 0.1 and 0.35 inches of rain
Group 3: between 0.35 and 1 inch of rain
Group 4: greater than 1 inch of rain

262 total coses
' ANOYA
Arnalysis of “arianoe For LTSS

Mo Selector

Source df
Const 1
Fagp 2
Ssh 3
Error 235
Total 261

The rain group factor and the season factor are both

Sums of Squares
B21.183
5. 20682
4 63382
4@.2004
585397

Mean Square
31,183
2.89260
1.54434
|, 132837

F-ratio
29934
12.28
9.77z2

&
i
b4

highly significant. The prior 2-way ANOVA found that

the interaction term was not significant; the ANOVA

was therefore re-run without that term.

Frob

a.aaa 1
. amE 1
8. @ae 1

Coefficients

Coefficients of: LTSS on Pgp

1
2
3

Level of Pgp Coefficient std. err.
—8.3362 B.86357
—B.863782 B.84182
B. 1966 B.840685
B. 1374 B.85064

4

Expected Cell Means

Expected Cell Means of: LTSS on Pgp

t Ratio

-5.195

—H.89844
4.91
2,712

Level of Pgp Expected Cell Mean Cell Count

1
2
3

1.165 23
1.491 6
1.692 164

1.632 47

4
h3 Post Hoo Tests

The first and third rain categories are significant.

prob
i 8.6688 1
B.92E8H
i B.E8E
B.887 1
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coefficients Lognormal Probability Plot for TSS (mg/L) By Final groups

Coefficients of: LTES on S=n ML Estimates

Level of S5sn Coefficient std. err. t Ratio prob

Fa -8, 1781 @ E3282 -3.974 $ @.EEE

SF B.87531 884581 1,644 8. 1615 %

su @178 @ B2 1 4.@26 $ @.EEE % Remeining

W -85 11 @ B4E5 -2.652 @84 13 %
- 80 - Su234

Expected Cell Means E o7 spad

(8] 50 -

Expected Cell Means of: LTSS on Ssn & 5 GOOd"f;SUfF“

20

Level of Ssn Expected Cell Mean Cell Count 10 4 e

Fe 1.325 67 5 -

SP 1.57 Sa .

su 1.673 i

W 1.412 g1

h3 Scheffe| Post Hoc Tests ! 10 7SS mgiL e 1000
Only Fall and Summer are significant. Further analyses resulted in two main groups of data.

Example 1-way ANOVA

1-way ANOVA

o CHTY.
Is at least one member of a group significantly 78

different from the other members? e
Complement analysis with group box-whisker plot 63

54
24

This doesn’t identify which one(s) is(are)
different.

If a significant member, should be able to
recognize from box-whisker plot and with
Bonferroni T-test (multiple pair-wise

comparisons). . .
Are any of these sites different from the others?




ANOVA Single Factor (using Excel)

SUMMARY

Groups Count Sum Average Variance
Column 1 264 52.8 407.7
Column 2 176 58.66667 340.3333
Column 3 1124 187.3333 19161.87
Column 4 196 39.2 427.7
Column 5 69 17.25 128.9167

ANAEROBIC STRIPPING OF SORBED POLLUTANTS
SOLUBLE PHOSPHATE
Star Lake Water,Hoover, Alabama

mg PO,-P/g medla

T T T T
Sorption Rinse1 Exposure Rinse2

Sand

mg PQ,-P/g media

T
Sorption Rinse1 Exposure Rinse 2

—e— Aerchic

1

1

Sorption Rinse1 Exposure Rinse 2

Compost

Sorptichn Rinse1 Exposure Rinse2

Anaerobic

ANOVA

Source of
Variation SS df MS

Between

Groups 98255 4 24564

Within
Groups 100218 18 5567

198473 22

4.41

P-value

0.0116

Pilot-Scale Test Results




Seven Test Period Average
June $ - September 15, 1994
Pimephales promelas
Cumulative Percent Morrtality vs Test Day

e CONTROL
ewmaeBASE FLOW
=—a HIGH FLOW

Parcent Mortality

0 11 12 13 14

Crunkilton, et al. (1996)

Model building/equation fitting (these are
parametric tests and the data must satisfy
various assumptions regarding behavior of the
residuals)

Linear equation fitting (statistically-based models)

- Simple linear regression (y=b0+b1x, with a single
independent variable, the slope term, and an intercept. It is
possible to simplify even further if the intercept term is not
significant).

- Multiple linear regression
(y=b0+b1x1+b2x2+b3x3+...+bkxk, having k independent
variables. The equation is a multi-dimensional plane describing
the data).

Design Configuration Optimization using Pool
Sand Filter Media

Turbidity (NTU

Total Sclids (mg/L)

- Stepwise regression (a method generally used with
multiple linear regression to assist in identifying the significant
terms to use in the model.)

- Polynomial regression
(y=b0+b1x1+b2x2+b3x3+...+bkxk, having one independent
variable describing a curve through the data).

16



Model Building Steps

Non-linear tion fittin nerallv develooed from 1) Re-examine the hypothesis of cause and effect (an original
on-finear equation Ttting (generally developed fro component of the experimental design previously conducted and
theoretical considerations) was the basis for the selected sampling activities).

i e et o e 2) Prepare preliminary examinations of the data, as described

form:_ y=bX, V\./h_ere_ X 1S the ir)dependent variable. Solved by previously (most significantly, prepare scatter plots and grouped
iteration to minimize the residual sum of squares). box/whisker plots).

3) Conduct comparison tests to identify significant groupings of
data. As an example, if seasonal factors are significant, then
cause and effect may vary for different times of the year.

4) Conduct correlation matrix analyses to identify simple
relationships between parameters. Again, if significant groupings
were identified, the data should be separated into these groupings
for separate analyses, in addition to an overall analysis.

Modeling Building (cont.)

5) Further examine complex inter-relationships between
parameters by possibly using combinations of hierarchical
cluster analyses, principal component analyses (PCA), and . . .
factor analyses. » Simple Correlation Matrices

 Hierarchical Cluster Analyses
hypothesized relationships and with information from the P
literature. Potential theoretical relationships should be * Principal Component Analyses (PCA) and

emphasized. Factor Analyses

Plots to Assist in Model Building

6) Compare the apFarent relationships observed with the

7) Develop initial models containing the significant factors
affecting the parameter outcomes. Simple apparent
relationships between dependent and independent parameters
should lead to reasonably simple models, while complex
relationships will likely require further work and more
complex models.




Simple Data Associations

- Pearson Correlation (residuals, the distances of the data
points from the regression line, must be normally
distributed. Calculates correlation coefficients between all
possible data variables. Must be supplemented with
scatterplots, or scatter plot matrix, to illustrate these
correlations. Also identifies redundant independent
variables for simplifying models).

- Spearman Rank Order Correlation (a non-parametric
equivalent to the Pearson test).

Complex Data Associations (typically only
available in advanced software packages)

- Hierarchical Cluster Analyses (graphical presentation of
simple and complex inter-relationships. Data should be
standardized to reduce scaling influence. Supplements
simple correlation analyses).

- Principal Component Analyses (identifies groupings of
parameters by factors so that variables within each factor
are more highly correlated with variables in that factor than
with variables in other factors. Useful to identify similar
sites or parameters).

RAINTOT
RATRDUR
AVEINT
PEAKINT
DRYPER
RUNTOT
RUNOUR
AVEDLS
PEARDIS
LAG

RAINTOT
RATROUR
AVEINT
PEAXINT
ORYPER
RUNTOT
RUNDUR
AVEDIS
PEAKDIS
LAG

Esmary [Industrial)
RAINTOT  RAIMDUR  AVEINT  PEAKINT DRYPER  AUNTOT  RUNOUR  AVEDLS
1.000
0.533 1.000
0.138  -0.387 1.000
0.512  -0.039 0.675 1.000
0.169 0.273  -0.096  -0.132  1.000
0.906 0.562 0.007 0,405 0.075  1.000
0.501 LI6S  -0.348 0.035  0.184  0.556 1,000
0.709  -0.013 0.480 0.654  -0.095  0.880 -0.026  1.000
0.725 0.129 0.372 L.748  0.041  0.699  0.150  (.B40
0.135 0.z20 -0.292 =0.217 0.052 0.205 0.134 0.058

Thistledowns (Residential/Commercial)

RAINTOT ~ RAINDUR  AVEINT  PEAKINT ORYPER  RUNTOT  RUNDUR  AVEDIS

1.000

0.553 1.000

0.321 -0.295 1.000

0.564 =0.104 2.827 1.000

a.z 9.308 =0.1%0 =0.122 1000

L3 0.448 0.187 0.551 0.283 1.000

0,508 0.389 -0.322 =0.148 0.337 0.402 1.000

0.398 =0.178 0.593 0.817  -0.037 0.585 -0.227 1.000

0.500 -0.051 0.659 Lz 0.009 0.702 -0.106 0.945
-0.152 -0.037 ~0.114 -0.202 -0.122 -0.184 -0.094 -0.138

PEAKDLS

1.000
a.107

PEAKDIS

1.00
-0.173

LAG

1.000

LAG

1.000

nistances™ !

Emary (Industrial)
g

-]
g E

BESTANCES 00

Thistledowns (Residential/Cosmercial)

I

(1) Distance metric is l-Pearson correlaticn
coefficient (normalized) and the linkage method is
nearest neighber
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Cluster Tree

ACRE ]
BOD5 ——— This dendogram from a

IMPERY cluster analysis
THN indicates simple and
RAINDPTH complex relationships
NOINO3 between data subsets.
FI
cu
PE——
coD
TDS
TSS
N

I T T T T 1
a 100 200 300 400 500

Distances

Regression Analyses

Formulate the objectives of the curve-fitting exercise (a
subset of the experimental design previously conducted).

Prepare preliminary examinations of the data, as described
previously (most significantly, prepare scatter plots and
probability plots of the data, plus correlation evaluations to
examine independence between multiple parameters that may
be included in the models)

Identify alternative models from the literature that have been
successfully applied for similar problems (part of the
previously conducted experimental design activities in order
to identify which parameters to measure, or to modify or
control).

Evaluate the data to ensure that regression is applicable and
make suitable data transformations.

Scree Plot

Principal
30 Component
Analysis
(PCA)is a
sophisticated
procedure
where
information is
sorted to
determine the
constituents
05k . needed to
explain the
variance of

0.0 . . the data.
0 5 10 15

MNumber of Factors

1.0F -

Eigenvalue

Regression (cont.)

5) Apply regression procedures to the selected alternative models.
6) Evaluate the regression results by examining the coefficient of
determination (R2) and the results of the analysis of variance

of the model (standard error analyses and p values for
individual equation parameters and overall model).

7) Conduct an analysis of the residuals (as described below).

8) Evaluate the results and select the most appropriate model(s).

9) If not satisfied, it may be necessary to examine alternative
models, especially based on data patterns (through cluster
analyses and principal component analyses) and re-
examinations and modification of the theoretical basis of
existing models. Statistical based models can be developed
using step-wise regression routines.
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Indoor vs. Historical Stillwater, Oklahoma,
Retardance Curves

\ 4 Outdoor Swale Data

Manning's"n"

Retardance Classes ( A - E)

A
B

Bluegrass

E

0.0o
1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00
VR (m*2/sec)

From such graphs swale hydraulic characteristics can be
predicted on the basis of flow rate, cross sectional geometry,
slope, and vegetation type.

Preferential Capture of Large Particles in Grass Swales

Cumulative Vol (%)

Low flow, blue grass, 5% ; gzzd
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Regression Example with ANOVA

» Examining treatment data with regression
and associated plots and ANOVA

Total Suspended Solids mg/L
STORM INLET OUTLET
137
7
8
38
17
16
23
75
77
41

3]
(3]

(3,

A
a Mo Do oo w

-— -
2S00 NOoOO A WN
A

Y
N
(o]

41

MCTT PERFORMANCE DATA - UNFILTERED SAMPLES
Total Suspended Salids

g8
i

Total Suspended Seikds (mgrl.)
- B 58 EEREE

T T

50
140
2
100
50 -
]
a0
F

[

B N

Total Suspended Schds (L)

1 e __—# |
———————fmm== -
I CochBasn  SemngChamber  Sancpeat  Oulet

Carch Basin ~ Senling  Samd-pet  MCTT
Chamber ~ Chamber  Clamber  Overall
Concentration Difference

1-saded P Vahse 0.1543 Q0010 01191 00002
Min. Percent Reduction =157 -300 «500 3
Max. Percent Reduction 88 100 45 100
Median Percent Reduction 17 91 400 L1
S1d Dev. of Percens Reduction 65 257 240 n
COV of Percent Reducton 74 19 -1.5 028

mg/L

Qutlet -

60

50 4

40 A

30 A

20 A

MCTT Performance - Total Suspended Solids mg/L

T T T T T T T

20 40 60 80 100 120 140
Inlet - mg/L

160
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Outlet - mgfL

MCTT Performance - Total Suspended Solids mg/L

100
*
10 4
L ]
L ] -
L]
1 T
1 100

Inlet - mg/L

1000

N

Detected
Observations

Mean

Median

StDev

SE Mean

Minimum

Maximum
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Q3

Influent
12

12

Effluent
12

MCTT Performance - Box Plots

MCTT Performance - Box Plots

180 1000
o Inlet Cutlet Inket Cutlet
120 4
100 { 100
E- 04 )
E
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Normal Probability Plot

999
99 H
95 o

.80

50

Probability

.20
.05 o .
.01 H
.001

1.0

Average: 1.52175
StDev: 0.420942
N:12

T T

15 20
LOGINLET

Anderson-Darling Normality Test
A-Squared: 0.238
P-Value: 0.721

Regression Plot

log(OUTLET) =0.0316853 + 0.422673 log(INLET)

$=0.433261 RSq=156% R-Sq(ad)=7.2%

Dependent wariable is:
Mo Selector

R =quared = 15.68
s = B.4332 with

LOGOUTLET

R =quared {adjustedy = 7.2%

12 - 2 =18 degrees of freedom

Source Sum of Squares df Mean Square

Regression  B.347834 1 B.3247854

Fezidual 1.87625 19 8. 187625

Yariable Coefficient s.e. of Coeff t-ratio
Caonstant 88333252 B.4375 88533

LOGIMLET  B.421692 B.3897 1.36

F-ratio
1.83

prob
B.9469
A.2832

—
=
=
j=2] 20
£
: 10
H 5.00
=
2
@) 2.00
% 1.00
F s ———  Regressin
______ 95% Confidence
Interval
0.20 — - —  95% Prediction
1 T T T T T 1 T nterval
8.0 10 15 20 30 40 60 80 100 150
TSS INLET (mg/L)
8.e + x
8.4
x
r
. * .
i
d x
u
a @ “ ®
| x
s
¢
L
/
L
3
-84
= x
x
8,560 8.625 8,758 8.875

predicted(L/L>
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Residual Analyses of Regression
Model

the residuals are independent
the residuals have zero mean

the residuals have a constant variance (S?)

the residuals have a normal distribution
(required for making F-tests)

(@) l‘llTT'||¥|Tr|ITT?|||TI
-10 =5 0 5 10

ITT1
*®

<10 20 30, a0 50 Y

1
>
IR

%

|| | | -~
6 7 E 9 10 i 12 Time order

Plots to Check Residuals

Check for normality of the residuals (preferably by
constructing a probability plot on normal probability
paper and having the residuals form a straight line,
or at least use an overall plot,

plot the residuals against the predicted values,
plot the residuals against the predictor variables, and

plot the residuals against time in the order the
measurements were made.

(a)

(b)

(©)

(d)
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Fredicted Runoff Volume (m=)

(mm)

Model Residuals

. o0 0 5000 () Y T T XY N Y]
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Data Trends

- Graphical methods (simple plots of concentrations versus
time of data collection).

- Regression methods (perform a least-squares linear
regression on the above data plot and examine ANOVA for the
regression to determine if the slope term is significant. Can be
misleading due to cyclic data, correlated data, and data that are not
normally distributed).

- Mann-Kendall test (a nonparametric test that can handle
missing data and trends at multiple stations. Short-term cycles and
other data relationships affect this test and must be corrected).

Data Trends (cont.)

- Sen’s estimator of slope (a nonparametric test based
on ranks closely related to the Mann- Kendall test. It is not
sensitive to extreme values and can tolerate missing data).

- Seasonal Kendall test (preferred over regression
methods if the data are skewed, serially correlated, or cyclic.
Can be used for data sets having missing values, tied values,
censored values, or single or multiple data observations in each
time period. Data correlations and dependence also affect this
test and must be considered in the analysis).
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Residential Land Use Lead Concentrations
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Concentration plots vs. time indicate possible trends. Lead
01 4 has historically dropped significantly from the earliest
stormwater studies to the present due to increased use of
unleaded gasoline (simple regression trend line shown).
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