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Recommended Exploratory Data Analysis 
Reference Books

Exploratory Data Analysis. John W. Tukey. Addison-Wesley 
Publishing Co. 1977. This is a basic book with many simple ways 
to examine data to find patterns and relationships.

The Visual Display of Quantitative Information. Edward R. Tufte. 
Graphics Press, Box 430, Cheshire, Connecticut  06410. 1983. 
This is a beautiful book with many examples of how to and how 
not to present graphical information. He has two other books that 
are sequels: Envisioning Information 1990, and Visual 
Explanations: Images and Quantities, Evidence and Narrative, 
1997. 

Visualizing Data. William S. Cleveland. Hobart Press, P.O. Box 
1473, Summitt, NJ  07902, 1993 and The Elements of Graphing 
Data, 1994 are both continuations of the concept of beautiful and 
information books on elements of style for elegant graphical 
presentations of data. 

Recommended Experimental Design Books (with 
some basic statistical methods)

Statistics for Experimenters. George E. P. Box, William 
G. Hunter and J. Stuart Hunter. John Wiley and 
Sons, 1978. This book contains detailed descriptions 
of basic statistical methods for comparing 
experimental conditions and model building.

Statistical Methods for Environmental Pollution 
Monitoring. Richard O. Gilbert. Van Nostrand
Company, 1987. This book contains a good summary 
of sampling designs and methods to identify trends, 
unusual conditions, etc. 

Recommended General Statistics Books
Statistics for Environmental Engineers. Paul Mac Berthouex and 

Linfield C. Brown. Lewis, 2nd ed. 2001. This excellent book 
reviews short-comings and benefits of many common statistical 
procedures, enabling much more thoughtful evaluations of 
environmental data.

Biostatistical Analysis. Jerrold H. Zar. Prentice Hall. 1996. A 
highly recommended basic statistics text book for the 
environmental sciences, especially with its many biological 
science examples. 

Primer on Biostatistics. Stanton A. Glantz. McGraw-Hill. 1992. 
This is one of the easiest to read and understand introductory 
texts on basic statistics available. 



2

Recommended Books for Specialized 
Statistical Methods

Nonparametrics: Statistical Methods Based on 
Ranks. E.L. Lehman and H.J.M. D’Abrera. 
Holden-Day and McGraw-Hill. 1975. This is a 
good discussion with many examples of 
nonparametric methods for the analysis and 
planning of comparative studies.

Applied Regression Analysis. Norman Draper and 
Harry Smith. John Wiley and Sons. 1981. 
Thorough treatment of one the most commonly 
used (and misused) statistical tools. 

Experimental Design

• Numbers of samples to satisfy data quality 
objectives

• Arrangement of experiments to maximize 
sensitivity and to identify major factors and 
interactions

Accuracy 
Definitions: 

(a) low precision, 
large bias, 

(b) low precision, 
small bias, 

(c) high 
precision, large 
bias, and 

(d) high 
precision, small 
bias (the only 
“accurate” case)

Gilbert 1987

n = [COV(Z1-α + Z1-β)/(error)]2

• n = number of samples needed
• α= false positive rate (1-α is the degree of confidence. A value of α

of 0.05 is usually considered statistically significant, corresponding 
to a 1-α degree of confidence of 0.95, or 95%.)

• β= false negative rate (1-β is the power. If used, a value of β of 0.2 
is common, but it is frequently ignored, corresponding to a β of 0.5.)

• Z1-α = Z score (associated with area under normal curve) 
corresponding to 1-α. If α is 0.05 (95% degree of confidence), then 
the corresponding Z1-α score is 1.645 (from standard statistical 
tables).

• Z1-β= Z score corresponding to 1-β value. If β is 0.2 (power of 
80%), then the corresponding Z1-β score is 0.85 (from standard 
statistical tables). However, if power is ignored and β is 0.5, then the 
corresponding Z1-β score is 0.

• error = allowable error, as a fraction of the true value of the mean
• COV = coefficient of variation (sometimes notes as CV), the 

standard deviation divided by the mean (Data set assumed to be 
normally distributed.)
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Error Types
• (alpha) (type 1 error) - a false positive, or assuming something 

is true when it is actually false. An example would be 
concluding that a tested water was adversely contaminated, 
when it actually was clean. The most common value of is 0.05 
(accepting a 5% risk of having a type 1 error). Confidence is 1-
α, or the confidence of not having a false positive.

• (beta) (type 2 error) - a false negative, or assuming something 
is false when it is actually true. An example would be 
concluding that a tested water was clean when it actually was 
contaminated. If this was an effluent, it would therefore be an 
illegal discharge with the possible imposition of severe 
penalties from the regulatory agency. In most statistical tests, is 
usually ignored (if ignored, is 0.5). If it is considered, a typical 
value is 0.2, implying accepting a 20% risk of having a type 2 
error. Power is 1-, or the certainty of not having a false 
negative. 

Experimental Design - Number 
of Samples Needed

The number of samples 
needed to characterize 
stormwater conditions for 
a specific site is 
dependent on the COV 
and allowable error. For 
most constituents and 
conditions, about 20 to 30 
samples may be sufficient 
for most objectives. Most 
Phase 1 sites only have 
about 10 events, but each 
stratification category 
usually has much more.

Burton and Pitt 2002

Burton and Pitt 2002 4548
5955
5839
2598
5838
4575
2284
2665
2255

2660

preliminary 
data set #2

preliminary 
data set #1

Experimental Design Example using 
Preliminary Data
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37.44% difference of means
0.36avg COV =

17.66avg st dev = 
23.1u1-u2=
38.6u2=
61.7u1 = 

0.410.31COV:
16.0019.32standard deviation:
38.661.7mean:

Set A Set B

0.800.50.550%0.8470.80.280%
5.30.8470.80.280%1.280.90.190%
7.30.8470.80.280%1.6450.950.0595%

10.01.280.90.190%1.6450.950.0595%
15.21.6450.950.0595%1.960.9750.02597.50%

nZ 1- β1- ββ(Power)Z 1- α1- αα(Confid.)

# of 
pairs:

False 
neg. 
rate:

False 
pos. rate:

Factorial Analysis
• A basic and powerful tool to identify significant 

factors and significant interacting factors.
• Use as the first step in sensitivity analysis and model 

building.
• Far superior to “holding all variables constant except 

for changing one variable at a time” classical 
approach (which doesn’t consider interactions).

• Should be used in almost all experimental 
evaluations, especially valuable in controlled 
laboratory tests, and very useful to organize 
“environmental” test results.

Box, Hunter and Hunter 1987
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Box, Hunter and Hunter 1987

Moisture 
(Wet=+/Dry=-)

Texture    
(Clay=+/Sand=-)

Compacted 
(Yes=+/No=-)

Factorial 
Group Average Standard Error Number

+ + + 1 0.23 0.13 18
+ + - 2 0.43 0.50 27
+ - + 3 1.31 1.13 18
+ - - 4 16.49 1.40 12
- + + 5 0.59 0.35 15
- + - 6 7.78 4.00 17
- - + 7 2.25 0.98 21
- - - 8 13.08 2.78 24

overall average 5.27
calculated polled S.E 1.90

Factorial Group effects rank Prob fc = 5.27 ± (T/2) ± (C/2)
C -8.35 1 7.14 fc = 5.27 ± (-6.02/2) ± (-8.35/2)
T -6.02 2 21.43 T C Calculated Values

MT -2.55 3 35.71 + + -1.92
M -1.31 4 50.00 + - 6.43

MC 0.66 5 64.29 - + 4.10
MTC 2.83 6 78.57 - - 12.45
TC 4.66 7 92.86

Probability of Effects for fc
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Pitt, et al., 1999

Particle Size Distribution of Street Dirt

Pitt 1979

Measured Particle Sizes, Including Bed Load Component, 
at Monroe St. Detention Pond, Madison, WI
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Pitt 1987

Washoff Plots for Heavy Rain Intensities, Dirty Streets, 
and Rough Pavement Textures

Ratio of Available SS to Total SS 
Street Dirt Loadings

Pitt 1987

Exploratory Data Analyses

• Basic QA/QC data plots
• Probability plots and histograms
• Scatterplots
• Grouped box and whisker plots
• Simple line plots

These data 
plots on 
regular 
probability 
graphs 
indicate few 
Normal 
distributions 
(pH is most 
obvious and 
expected).
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These log-
normal 
probability 
plots indicate 
much better 
straight-line 
fits, indicating 
likely log-
normal 
probability 
distributions 
of the data.
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Probability Plots for First-Flush Analyses

Commercial First Flush
Samples

Commercial Composite
Samples

Comparison of Sewage with Dry 
Weather Source Samples

Library samples v/s sewage-E. coli  
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p=0.05,  % Sewage= 0.43

E. coli= 12,000 MPN/100 mL

p=0.05,  % Sewage= 0.95

Enterococci = 5,000 
MPN/100 mL

MEDIA CAPACITIES FOR COPPER 
Plots of concentrations vs. rain depth typically show random patterns.
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Plots of expected relationships are being used to identify data 
redundancies that can reduce future analytical costs.

3-D plot showing lack of obvious relationship
between rain depth, geographical area, and 
drainage area for residential suspended solids 
data.

Paired observations of data

Parametric tests (data require normality and equal variance)
- Paired Student’s t-test (more power than non-parametric 
tests)

Non-parametric tests
- Sign test (no data distribution requirements, some missing 

data accommodated) 
- Fiedman’s test (can accommodate a moderate number of 

“non-
detectable” values, but no missing values are allowed

- Wilcoxon signed rank test (more power than sign test, but 
requires symmetrical data distributions)



10



11

Solids Removal in Swales: Flow Length
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Solids Removal in Swales: Flow Depth

Two independent groups of data

Parametric tests (data require normality and equal variance)
- Independent Student’s t-test (more power than non-

parametric tests)

Non-parametric tests
- Mann-Whitney rank sum test (probability distributions of 

the two data sets must be the same and have the same 
variances, but do not have to be symmetrical; a moderate 
number of “non-detectable” values can be accommodated)

Many groups (use multiple comparison tests, such as 
the Bonferroni t-test, to identify which groups are 

different from the others if the group test results are 
significant).

Parametric tests (data require normality and equal variance)
- One-way ANOVA for single factor, but for >2 “locations”

(if 2 “locations, use Student’s t-test)
- Two-way ANOVA for two factors simultaneously at 

multiple “locations”
- Three-way ANOVA for three factors simultaneously at 

multiple “locations”
- One factor repeated measures ANOVA (same as paired t
test, except that there can be multiple treatments on the 
same group) 

- Two factor repeated measures ANOVA (can be multiple 
treatments on two groups)

Many Groups (cont.)

Non-parametric tests:

- Kurskal-Wallis ANOVA on ranks (use when samples 
are from non-normal populations or the samples do not 
have equal variances).

- Friedman repeated measures ANOVA on ranks (use 
when paired observations are available in many groups).
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Many Groups (cont.)

Nominal observations of frequencies (used when counts are 
recorded in contingency tables)

- Chi-square (Χ2) test (use if more than two groups or 
categories, or if the number of observations per cell in a 
2X2 table are > 5).

- Fisher Exact test (use when the expected number of 
observations is <5 in any cell of a 2X2 table).

- McNamar’s test (use for a “paired” contingency table, such 
as when the same individual or site is examined both before
and after treatment)

These grouped box-whisker 
plots sort all of the data by land 
use. Kruskal-Wallis analyses 
indicate that all constituents 
have at least one significantly 
different category from the 
others. Heavy metal differences 
are most obvious.

Example 2-way ANOVA

• Want to investigate the differences between 
different strata.

• Are the variations between groups more important 
than the variations within the groups?

• What about interactions between different 
variables?

• ANOVA requires normally distributed data. In 
most stormwater cases, log-transformed values 
need to be used.
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TSS Concentration in Virginia and Maryland
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Group 1: <0.1 inch of rain
Group 2: between 0.1 and 0.35 inches of rain
Group 3: between 0.35 and 1 inch of rain
Group 4: greater than 1 inch of rain

The rain group factor and the season factor are both 
highly significant. The prior 2-way ANOVA found that 
the interaction term was not significant; the ANOVA 
was therefore re-run without that term.

The first and third rain categories are significant.
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Only Fall and Summer are significant.
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ML Estimates

Further analyses resulted in two main groups of data.

Example 1-way ANOVA

• Is at least one member of a group significantly 
different from the other members? 

• Complement analysis with group box-whisker plot 
• This doesn’t identify which one(s) is(are) 

different.
• If a significant member, should be able to 

recognize from box-whisker plot and with 
Bonferroni T-test (multiple pair-wise 
comparisons). 

164
234324

146443254
34422455463
953877945

12141534378
Site ESite DSite CSite BSite A

1-way ANOVA

Are any of these sites different from the others?
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128.916717.25694Column 5
427.739.21965Column 4

19161.87187.333311246Column 3
340.333358.666671763Column 2

407.752.82645Column 1
VarianceAverageSumCountGroups

SUMMARY

ANOVA Single Factor (using Excel)

22198473Total

556718100218
Within 
Groups

2.92770.01164.4124564498255
Between 
Groups

F critP-valueFMSdfSS
Source of 
Variation

ANOVA

Pilot-Scale Test Results
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Crunkilton, et al. (1996)

Design Configuration Optimization using Pool 
Sand Filter Media

Model building/equation fitting (these are 
parametric tests and the data must satisfy 

various assumptions regarding behavior of the 
residuals)

Linear equation fitting (statistically-based models)

- Simple linear regression (y=b0+b1x, with a single 
independent variable, the slope term, and an intercept. It is 
possible to simplify even further if the intercept term is not 
significant).

- Multiple linear regression 
(y=b0+b1x1+b2x2+b3x3+…+bkxk, having k independent   
variables. The equation is a multi-dimensional plane describing 
the data).

- Stepwise regression (a method generally used with 
multiple linear regression to assist in identifying the significant 
terms to use in the model.) 

- Polynomial regression 
(y=b0+b1x1+b2x2+b3x3+…+bkxk, having one independent 
variable describing a curve through the data).
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Non-linear equation fitting (generally developed from 
theoretical considerations)

- Nonlinear regression (a nonlinear equation in the 
form: y=bx, where x is the independent variable. Solved by 
iteration to minimize the residual sum of squares).

Model Building Steps
1) Re-examine the hypothesis of cause and effect (an original 

component of the experimental design previously conducted and 
was the basis for the selected sampling activities). 

2)  Prepare preliminary examinations of the data, as described 
previously (most significantly, prepare scatter plots and grouped 
box/whisker plots).

3)  Conduct comparison tests to identify significant groupings of 
data. As an example, if seasonal factors are significant, then 
cause and effect may vary for different times of the year.

4)  Conduct correlation matrix analyses to identify simple 
relationships between parameters. Again, if significant groupings 
were identified, the data should be separated into these groupings 
for separate analyses, in addition to an overall analysis.

Modeling Building (cont.)
5) Further examine complex inter-relationships between 

parameters by possibly using combinations of hierarchical 
cluster analyses, principal component analyses (PCA), and 
factor analyses.

6) Compare the apparent relationships observed with the 
hypothesized relationships and with information from the 
literature. Potential theoretical relationships should be 
emphasized. 

7) Develop initial models containing the significant factors 
affecting the parameter outcomes. Simple apparent 
relationships between dependent and independent parameters 
should lead to reasonably simple models, while complex 
relationships will likely require further work and more 
complex models.

Plots to Assist in Model Building

• Simple Correlation Matrices
• Hierarchical Cluster Analyses 
• Principal Component Analyses (PCA) and 

Factor Analyses 
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Simple Data Associations

- Pearson Correlation (residuals, the distances of the data 
points from the regression line, must be normally 
distributed. Calculates correlation coefficients between all 
possible data variables. Must be supplemented with 
scatterplots, or scatter plot matrix, to illustrate these 
correlations. Also identifies redundant independent 
variables for simplifying models).

- Spearman Rank Order Correlation (a non-parametric 
equivalent to the Pearson test).

Complex Data Associations (typically only 
available in advanced software packages)

- Hierarchical Cluster Analyses (graphical presentation of 
simple and complex inter-relationships. Data should be 
standardized to reduce scaling influence. Supplements 
simple correlation analyses).

- Principal Component Analyses (identifies groupings of 
parameters by factors so that variables within each factor 
are more highly correlated with variables in that factor than 
with variables in other factors. Useful to identify similar 
sites or parameters).
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This dendogram from a 
cluster analysis 
indicates simple and 
complex relationships 
between data subsets.

Principal 
Component 
Analysis 
(PCA) is a 
sophisticated 
procedure 
where 
information is 
sorted to 
determine the 
constituents 
needed to 
explain the 
variance of 
the data.

Regression Analyses
1) Formulate the objectives of the curve-fitting exercise (a 

subset of the experimental design previously conducted). 

2)   Prepare preliminary examinations of the data, as described 
previously (most significantly, prepare scatter plots and 
probability plots of the data, plus correlation evaluations to 
examine independence between multiple parameters that may 
be included in the models) 

3)   Identify alternative models from the literature that have been 
successfully applied for similar problems (part of the 
previously conducted experimental design activities in order 
to identify which parameters to measure, or to modify or 
control).

4)   Evaluate the data to ensure that regression is applicable and 
make suitable data transformations. 

Regression (cont.)
5) Apply regression procedures to the selected alternative models.

6) Evaluate the regression results by examining the coefficient of 
determination (R2) and the results of the analysis of variance 
of the model (standard error analyses and p values for 
individual equation parameters and overall model).

7) Conduct an analysis of the residuals (as described below).

8) Evaluate the results and select the most appropriate model(s).

9)  If not satisfied, it may be necessary to examine alternative
models, especially based on data patterns (through cluster 
analyses and principal component analyses) and re-
examinations and modification of the theoretical basis of 
existing models. Statistical based models can be developed 
using step-wise regression routines. 



20

Indoor vs. Historical Stillwater, Oklahoma,
Retardance Curves

From such graphs swale hydraulic characteristics can be From such graphs swale hydraulic characteristics can be 
predicted on the basis of flow rate, cross sectional geometry, predicted on the basis of flow rate, cross sectional geometry, 
slope, and vegetation type.slope, and vegetation type.

Low flow, blue grass, 5%
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Regression Example with ANOVA

• Examining treatment data with regression 
and associated plots and ANOVA

<2.54112
810311
54110

<2.5779
6758

<2.5237
4166
6175
8384
683
372
551371

OUTLETINLETSTORM
Total Suspended Solids mg/L
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776.5Q3

2.716.3Q1

55137Maximum

37Minimum

5.511.9SE Mean

16.541.1StDev

5.539.5Median

11.2248.6Mean

912
Detected 
Observations

1212N
Influent Effluent
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P-Value:   0.721
A-Squared: 0.238

Anderson-Darling Normality Test

N: 12
StDev: 0.420942
Average: 1.52175
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Residual Analyses of Regression 
Model

• the residuals are independent
• the residuals have zero mean
• the residuals have a constant variance (S2)
• the residuals have a normal distribution 

(required for making F-tests) 

Plots to Check Residuals
• Check for normality of the residuals (preferably by 

constructing a probability plot on normal probability 
paper and having the residuals form a straight line, 
or at least use an overall plot,

• plot the residuals against the predicted values,

• plot the residuals against the predictor variables, and

• plot the residuals against time in the order the 
measurements were made. 
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Data Trends

- Graphical methods (simple plots of concentrations versus 
time of data collection). 

- Regression methods (perform a least-squares linear 
regression on the above data plot and examine ANOVA for the 
regression to determine if the slope term is significant. Can be
misleading due to cyclic data, correlated data, and data that are not 
normally distributed). 

- Mann-Kendall test (a nonparametric test that can handle 
missing data and trends at multiple stations. Short-term cycles and 
other data relationships affect this test and must be corrected). 

Data Trends (cont.)

- Sen’s estimator of slope (a nonparametric test based 
on ranks closely related to the Mann- Kendall test. It is not 
sensitive to extreme values and can tolerate missing data).

- Seasonal Kendall test (preferred over regression 
methods if the data are skewed, serially correlated, or cyclic. 
Can be used for data sets having missing values, tied values, 
censored values, or single or multiple data observations in each
time period. Data correlations and dependence also affect this 
test and must be considered in the analysis).
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Concentration plots vs. time indicate possible trends. Lead 
has historically dropped significantly from the earliest 
stormwater studies to the present due to increased use of 
unleaded gasoline (simple regression trend line shown).

Residential Land Use Lead Concentrations


